Chapter 30 Neuroleptics in Great Apes, with Specific Reference to Modification of Aggressive Behavior in a Male Gorilla
The use of drugs to treat animal behavioral problems is a relatively new field of veterinary medicine. Most reports of using these drugs in zoo animals are limited to ungulates,2 with few describing their use in great apes.3,5,6,9 One report concludes that psychoactive drugs have not been successful in great apes when used to curb aggression, although this outcome may have been the result of misdiagnosis, inappropriate dose rates, or insufficient treatment duration.6
CATEGORIES OF NEUROLEPTICS AND ANTIDEPRESSANTS USED FOR BEHAVIORAL MODIFICATION
Neuroleptics, also referred to as antipsychotics in human medicine, include butyrophenones (haloperidol, azaperone), phenothiazines (perphenazine, fluphenazine), thioxanthenes (flupenthixol, zuclopenthixol), and substituted benzamides (sulpiride). These drugs cause a range of degrees of sedation, alpha-adrenoceptor blocking activity, extrapyramidal symptoms, and antimuscarinic effects.1 These drugs generally tranquilize without affecting consciousness or excitement, but should not be regarded merely as “tranquilizers.” In humans, for the short term, they are used to calm disturbed patients, whatever the underlying psychopathology. Newer neuroleptics, such as risperidone, also called atypical antipsychotics, may be better tolerated because extrapyramidal symptoms occur less frequently (in humans).
Antidepressants may also be used to moderate abnormal animal behaviors, particularly the selective serotonin reuptake inhibitors (SSRIs), such as citalopram and fluoxetine (Prozac; Elly Lilly, U.S.A.), and the monoamine oxidase inhibitors (MAOIs), such as clomipramine.8 Interaction between these two groups may complicate switching from one drug to another; MAOIs are rarely used in human medicine because of the dangers of dietary and drug interactions. Other antidepressants should not be started for 2 weeks after treatment with MAOIs has stopped (3 weeks with clomipramine). Conversely, an MAOI should not be started until at least 2 weeks after anticyclic or related antidepressant (3 weeks with clomipramine) has stopped. For this reason, the selection of SSRIs or MAOIs for the treatment of zoo animals should be undertaken with great care because if one is not working, the time required to change drugs is prolonged, which may lead to an exacerbation of the welfare issue.
CAUTIONS, CONTRAINDICATIONS, AND SIDE EFFECTS OF NEUROLEPTICS
The most significant side effects are the extrapyramidal signs. These effects occur most often with the piperazine phenothiazines (perphenazine, fluphenazine), but also with the butyrophenones (haloperidol, azaperone). The phenothiazine group may be further divided in groups 1, 2, and 3. Group 3 phenothiazines include perphenazine, which is widely used in zoo animals, particularly ungulates,2 because it is associated with fewer sedative effects than the other groups. However, perphenazine may produce more pronounced extrapyramidal effects. Extrapyramidal signs are easy to recognize but cannot be predicted because they depend on dose, type of drug, and individual susceptibility. Extrapyramidal signs include parkinsonian-like symptoms (including tremor), dystonia (abnormal face and body movements), akathisia (restlessness), and tardive dyskinesia (involuntary rhythmic movement of tongue, face, and jaw). The latter usually develops in humans who receive long-term therapy but may occur on short-term treatment and low doses or after withdrawal of the drug.
USE OF NEUROLEPTICS IN GORILLAS
Few published reports on the use of neuroleptic or behavior-modifying drugs in great apes exist. A survey on the use of psychoactive drugs in great apes included the use of haloperidol, with and without fluoxetine, or risperidone to control aggression in male gorillas.6
A case study on the control of aggression and abnormal behaviors in a group of two female gorillas and one male gorilla described the use of haloperidol and thioridazine in all three animals.5 Another paper has described the use of haloperidol in a female gorilla to treat self-mutilation.3 Zuclopenthixol has been used to reduce anxiety without sedation in a group of 10 gorillas transported by air from Europe to Australia.12
Perphenazine enanthate as a long-acting injectable product has been used to moderate aggression in an adult male gorilla intermittently over several months. On one occasion an extrapyramidal side effect similar to neuroleptic malignant syndrome was noted 3 days after injection, characterized by a hypertonic crisis five times in 1 hour.7 Oral zuclopenthixol has been used in a gorilla reacting aggressively to visiting public, using doses of 10 to 25 mg three times a day. The dose was gradually tapered to zero, with a decrease of 5 mg every week.7 Transportation of an adult male gorilla from Germany to South Africa was facilitated using 75 mg zuclopenthixol and 30 mg haloperidol; this dose resulted in deep sedation, however, making clinical assessment difficult.4
NEUROLEPTIC DRUGS TO MODERATE AGGRESSION AND FACILITATE INTRODUCTION IN A MALE GORILLA
Behavioral Management Techniques
The introduction of new males to a captive gorilla group is a potentially dangerous procedure and some fighting may occur, which indeed is normal behavior. Studies on mountain gorillas showed that long-term resident, dominant females received a higher proportion of displays from the dominant males; there was an association between female appeasement reactions and male displays. This suggests that males display to create occasions for the females to confirm their subordination to them. Estrous females did not receive a higher proportion of male displays, and there was no association between male display and copulation.10
A study of natural behavior in western lowland gorillas found that evidence for an agonistic dominance hierarchy between females is weak; however, rates of agonistic behavior between females and silverback males were higher. Agonistic relationships between males and females conformed to patterns seen in mountain gorillas.11 Therefore, excessive aggressive behavior resulting in severe injury is to be avoided because it is abnormal behavior. The natural behavior of the species is that the male will display some aggressive behavior to the females, particularly the dominant female. Female 1 was indeed the dominant female of the two gorillas in the Bristol study, but the male did not respond to her subordinate behavior toward him, and the aggression was so extreme as to be designated “abnormal.”
It was also noted that the male gorilla appeared fearful when offered food by keepers. Human movements were slow and calm during interactions with the male. When he was aggressive toward staff by banging the doors or the intervening mesh, no punishment was administered, and the behavior was ignored. This behavior was gradually extinguished during the medication period. The male’s agitation increased at the time of estrus in female 2; therefore, initially at these times, female 1 was isolated from the male. Although excitement is often noted when females are in estrus, this does not manifest as aggressive behaviors in captive or wild animals, and therefore such behavior is also abnormal.10,11