Chapter 2 Contraception
Contraception has become integral to the reproductive management of mammals. Contraception recommendations are incorporated into animal care manuals and master plans, and almost all zoos and aquariums use contraception to control reproduction. We use the term contraception to refer to methods that are designed to be reversible, so that animals may return to reproduction at a later date if recommended to breed. In contrast, we use the term sterilization for methods that are considered permanent. For more extensive discussions of the issues surrounding contraceptive use and available methods, as well as complete citations, see Wildlife Contraception: Issues, Methods and Application1 and Wild Mammals in Captivity.2
Female Contraception
Permanent Methods
Permanent sterilization may be the best choice for those not likely to receive breeding recommendations in the future or that may have clinical conditions that make reproduction inadvisable. Ovariectomy removes the source of gametes as well as reproductive hormones, eliminating estrous behavior and secondary sex characteristics, such as perineal swelling. Although removal of the uterus in addition to the ovaries is common for domestic dogs and cats in the United States, a comparative study of the two procedures in dogs has found no differences in prevalence of any of the anticipated side effects.17 Information on potential side effects of ovariectomy is available primarily for dogs, cats, and humans. No data, however, are available on the potential for decreased bone density following removal of the ovaries in long-lived animals such as great apes, but it may be assumed equivalent to the results for humans.
Reversible Contraception
Steroid Hormones
Progestins
Synthetic progestins (Table 2-1) have proven effective in all mammalian species that have been treated. Progestins may prevent ovulation by negative feedback on luteinizing hormone (LH), but they also thicken cervical mucus so that sperm passage is impeded, interrupt sperm and ovum transport, and interfere with implantation.12 Because higher doses are needed to block ovulation than to affect the other endpoints, ovulation may occur in animals that are adequately contracepted.7 Progestins cannot completely suppress follicle development and the resulting estradiol secretion may stimulate physical and behavioral signs of estrus, so those indications cannot be used to judge efficacy.
Synthetic Progestin | Product Name | Manufacturer or Supplier |
---|---|---|
Melengestrol acetate | MGA implants | Wildlife Pharmaceuticals |
MGA feed (Mazuri) | Purina Mills Inc. | |
MGA 200 or 500 Pre-mix | Pharmacia and Upjohn | |
MGA liquid | Wildlife Pharmaceuticals | |
Megestrol acetate | Megace | Par Pharmaceuticals |
Altrenogest | Regu-mate oral solution | Merck Intervet |
Medroxyprogesterone acetate | Depo-Provera injections | Pharmacia and Upjohn |
Proligestone | Delvosteron injections (Europe) | Intervet |
Levonorgestrel | Jadelle implants (Europe) | Wyeth-Ayerst |
Etonorgestrel | Implanon implants (Europe, Australia, Indonesia) | Organon |
A further problem with MPA is androgenic activity, equated in some tests with dihydrotestosterone, a natural androgen with potent morphologic effects, especially during development. For example, Depo-Provera treatment of female black lemurs resulted in male-like pelage darkening.3 Another progestin with androgen effects, levonorgestrel, has the highest binding affinity to androgen receptors of current progestins and is considered a potential health risk because of its effect on lipids and the cardiovascular system.24 Although Norplant implants are no longer available in the United States, some progestin-only birth control pills contain levonorgestrel, its active ingredient.
The major side effect reported for progestins is weight gain, and one product (megestrol acetate, Megace, Par Pharmaceuticals, Woodcliff Lake, NJ) is marketed specifically to increase appetite. Progestin supplementation may help maintain pregnancy in some species, whereas in others, especially early in gestation, they have been associated with embryonic resorption.4 Progestins may interfere with parturition via suppression of uterine smooth muscle contractility, as documented in white-tailed deer,20 but primates treated with progestins have given birth without incident.1 This species difference may be related to the patterns of progesterone near term. In general, species other than primates experience a decline in progesterone before the onset of parturition, which may be necessary to release the myometrium from suppression. In contrast, progestins appear to be safe for lactating females and nursing young. They do not interfere with milk production, and no negative effects on the growth or development of nursing infants have been found.
Although MGA implants have been used since the mid-1970s, proper analyses of reversibility by species have been difficult because of the variables that must be considered. First, there must be a sufficient number of attempts to breed, but other factors include matching contracepted and noncontracepted groups on age and parity prior to MGA use. In addition, although MGA implants are recommended to be replaced every 2 years, this is a conservative estimate and in many cases is effective considerably longer. Thus, reversal may only be reasonably expected if the implant is removed. Such analyses have been performed only on golden lion tamarins and tigers. Wood and colleagues25 have found that 75% of the tamarins conceive within 2 years, a rate comparable to nontreated females, but treated females have higher rates of miscarriage and stillbirths. Chuei and associates9 have found that only 62% of tigers give birth 5 years after implant removal compared with 85% of nontreated females after 2.7 years. Possible reasons for poorer recovery in tigers were not tested directly but may be related to the high risk of uterine pathology in felids, which might interfere with pregnancy maintenance.