Web Chapter 13 Because of the difficulty in achieving adequate glycemic control with insulin therapy in cats with type 2 diabetes mellitus, diabetic neuropathy is a common attending condition in diabetic cats. Most diabetic cats suffer from a clinical or subclinical form of diabetic neuropathy, as can be detected via neurologic examination, impaired motor and sensory peripheral nerve studies, and nerve biopsy (e.g., myelin degeneration in Schwann cells) (Mizisin et al, 1998, 2002). Clinical signs include severe manifestations such as plantigrade stance when standing and walking. Cats are unable to communicate sensory deficits or abnormalities; however, sensorimotor neuropathy, characterized by conduction deficits and increased F wave and cord dorsum potential latencies in both pelvic and thoracic limbs, has been documented in diabetic cats (Mizisin et al, 2002). Furthermore, nerve structural abnormalities such as splitting and ballooning of myelin and demyelination, indicative of Schwann cell injury, are common in cats with neuropathy (Mizisin et al, 1998, 2002). Axonal degeneration is less common, developing in severely affected cats. Concurrent gastrointestinal disease is very common in those with diabetes, particularly cats. In a study by Crenshaw and Peterson (1996) 39 of 42 cats presented for DKA had concurrent diseases, including hepatic lipidosis, cholangiohepatitis, pancreatitis, chronic renal failure, urinary tract infection, or neoplasia. In another survey of concurrent disorders in 221 diabetic dogs, over 70% had elevated liver enzymes (Hess and Ward, 2000). Alanine aminotransferase and aspartate aminotransferase activities are most commonly increased, secondary to hypovolemia, poor hepatic blood flow, and subsequent hepatocellular damage. Greater increases in serum alkaline phosphatase activity may occur if pancreatitis and secondary cholestasis ensue. Patient evaluation is complicated by the effect of both the diabetes mellitus and DKA on liver enzymes and liver function tests. Ultrasonography and biopsy may help differentiate primary hepatic disease from secondary diabetic complications such as hepatic lipidosis and cholangiohepatitis. Pancreatitis is a common concurrent disease with diabetes mellitus (see Chapters 137 and 138). As such, it is not necessarily a complication of diabetes, but the two occur concurrently in about 40% of dogs and 50% of cats. A common cause of noniatrogenic hypoglycemia in previously well-regulated diabetics is reversal of glucose toxicity in cats. Because cats are often type 2 diabetics, their insulin requirements can be extremely labile. A cat’s insulin requirement can change quickly and dramatically with a change to a low-carbohydrate, high-protein diet; an increase in activity level; and a shift from body fat to body muscle. To complicate matters further, the administration of insulin or oral hypoglycemic agents may reverse pancreatic islet cell resistance (glucose toxicity), resulting in a restoration of insulin secretory capability; this may result in hypoglycemia. For either dogs or cats, concurrent disease usually increases insulin requirements; thus, if the concurrent disease is controlled or resolved, insulin requirements may decline significantly (see Chapters 44 and 48).
Complicated Diabetes Mellitus
Diabetic Neuropathy
Hepatic Disease
Pancreatic Disease
Hypoglycemia
Chapter 13: Complicated Diabetes Mellitus
Only gold members can continue reading. Log In or Register a > to continue

Full access? Get Clinical Tree

