Chapter 197 Calcium oxalate (CaOx) urolithiasis is a condition affecting dogs and cats that has become more common over the last several decades (Cannon et al, 2007; Low et al, 2010). A recent study examined the composition of uroliths submitted to the Minnesota Urolith Center between the years 1981 and 2007 (Osborne et al, 2008). During this time the percentage of CaOx stones in total submissions increased from 5% to 41% in dogs, whereas that in cats increased from 2% to 41%. Concurrently, the incidence of struvite uroliths decreased from 78% to 40% in dogs and from 78% to 49% in cats. It is thought that the primary factor causing this trend was dietary modifications made to address struvite urolithiasis. Overall, the pathophysiology of CaOx urolithiasis is complex, and much still remains to be understood. This chapter outlines what we know about CaOx urolithiasis and how this knowledge can be applied to design effective therapies for this disease. The urinary pH also has been evaluated for its role in CaOx formation, and there is controversy over its importance. The absolute solubility of CaOx in urine is affected marginally over a broad pH range, but there are several reasons why a low pH may promote CaOx formation: persistent aciduria is associated with low-grade metabolic acidosis, which induces calcium resorption from bone and can increase urinary calcium excretion; acidic urine may diminish the ability of citrate and pyrophosphate to act as CaOx inhibitors; and increased reabsorption of calcium from the distal tubule occurs when the urine is alkaline. Furthermore, feeding an acidifying diet has been identified as a risk factor for CaOx formation in cats and dogs. In dogs the risk was three times higher overall (Lekcharoensuk et al, 2002), whereas in cats the risk was three times higher when diets were fed producing a urinary pH of 5.99 to 6.15 compared with diets producing a pH of 6.5 to 6.9 (Lekcharoensuk et al, 2001). Studies also have evaluated the effect of pH specifically on CaOx RSS, but results so far have been conflicting. There is no known protocol to dissolve CaOx uroliths at this time, and in many cases the only effective treatment is removal. Urolith removal can be achieved surgically, and less invasive methods are becoming increasingly available (see Chapters 195 and 199). Depending on the location of the urolith various techniques may be employed, such as lithotripsy (extracorporeal and intracorporeal), cystoscopic removal, or urohydropulsion. An obstructive stone also can be addressed by the placement of a stent, subcutaneous ureteral bypass device, or other interventional procedures. Perhaps the most important dietary modification that can be made is to increase water intake and urinary volume while decreasing urine specific gravity. Retrospective studies of cats (Lekcharoensuk et al, 2001) and dogs (Lekcharoensuk et al, 2002) with CaOx urolithiasis found a significantly lower risk of CaOx formation with higher dietary moisture content. Feeding a canned diet is the best way to increase water intake, but some dogs and cats will not eat canned food. In these cases, water or broth can be added to dry food, or broth can be added to the water supply. Water fountains also may be helpful to increase water intake in cats. Appropriate targets for specific gravity are less than 1.025 in cats and less than 1.020 in dogs; achieving dilute urine can be very difficult in cats. Supplementation of sodium chloride has been investigated as a means of increasing water consumption but has been a point of controversy. Increased sodium consumption increases urinary calcium excretion and may increase the risk of CaOx urolithiasis. However, prospective studies have shown that increasing dietary sodium content significantly decreased the CaOx RSS in healthy and CaOx stone–forming dogs (Lulich et al, 2005; Stevenson, Hynds et al, 2003) as well as in healthy cats. The total daily urinary calcium excretion increased in these studies, but apparently the effect on CaOx RSS is offset by the increase in water intake and urine volume. These findings suggest a benefit to NaCl supplementation, but long-term studies still are needed. Sodium supplementation can be considered if there is an inadequate response to dietary therapy and the urine is not dilute, but patient selection must be done carefully. Short-term studies in cats have shown no adverse effects on kidney function or blood pressure, but caution is required when considering adding salt to the diets of dogs or cats with kidney disease or hypertension until longer-term studies are done. Additionally, high-sodium diets are contraindicated for animals with heart disease. Higher dietary protein historically has been associated with an elevated risk of CaOx formation because it can promote acidosis and hypercalciuria. However, retrospective studies in dogs and cats have found a lower risk of CaOx formation with higher dietary protein (Lekcharoensuk et al, 2001, 2002). Overall, the exact amount and type of protein that is ideal has yet to be determined, but most diets designed to reduce CaOx urolithiasis have reduced protein levels. The importance of the calcium and oxalate content of food was demonstrated by a study in healthy dogs (Stevenson, Hynds et al, 2003). In these dogs, urinary oxalate excretion and CaOx RSS increased when oxalate intake was increased, but only when the intake of calcium was low. The lowest CaOx RSS was found in dogs fed a diet that was lowest in both calcium and oxalate. If only calcium or only oxalate was decreased, the CaOx RSS increased. This emphasizes the need for a balanced amount of calcium and oxalate in the diet, but in all cases high calcium or oxalate content should be avoided. Examples of high-oxalate foods are leafy green vegetables and nuts. For a more complete list of foods with high oxalate content, see the Oxalosis and Hyperoxaluria Foundation website (www.ohf.org/diet.html). TABLE 197-1 Target pH Values for Urinary Diets
Calcium Oxalate Urolithiasis
Pathophysiology
Treatment
Surgical and Interventional Management
Medical Management
Diet
Food
Target pH
Hill’s Prescription Diet c/d Multicare Feline
6.2-6.4
Hill’s Prescription Diet u/d Canine
7.1-7.7
Royal Canin Veterinary Diet Urinary SO Canine
5.5-6.0
Royal Canin Veterinary Diet Urinary SO Feline
6.0-6.3 You may also need
Full access? Get Clinical Tree
Calcium Oxalate Urolithiasis
Only gold members can continue reading. Log In or Register a > to continue
