The Pig Model for Studying Amino Acid-Related Human Diseases: Amino Acids and Intestinal Diseases in Preterm Infants





Alegria A, Barbera R, Farre R, Lagarda MJ, Lopez JC (1999) Amino acid contents of infant formulas. J Food Compos Anal 12:137–146


Amin HJ, Zamora SA, McMillan DD, Fick GH, Butzner JD, Parsons HG et al (2002) Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J Pediatr 140:425–431PubMed


Arboleya S, Binetti A, Salazar N, Fernández N, Solís G, Hernández-Barranco A, Margolles A, de Los Reyes-Gavilán CG, Gueimonde M (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79:763–772PubMed


Atumal C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280:G922–G929


Ball RO, House JD, Wykes LL, Pencharz PB (1996) A piglet model for neonatal amino acid metabolism during total parenteral nutrition. In: Tumbleson ME, Schook LB (eds) Advances in swine in biomedical research. Plenum Press, New York, pp 713–731


Bauer CR, Morrison JC, Poole WK, Korones SB, Boehm JJ, Rigatto H, Zachman RD (1984) A decreased incidence of necrotizing enterocolitis after prenatal glucocorticoid therapy. Pediatrics 73:682–688PubMed


Baxter D (2010) Impaired functioning of immune defenses to infection in premature and term infants and their implications for vaccination. Hum Vaccin 6:494–505PubMed


Becker RM, Wu G, Galanko JA, Chen W, Maynor AR, Bose CL, Rhoads JM (2000) Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 137:785–793PubMed


Berman L, Moss RL (2011) Necrotizing enterocolitis: an update. Semin Fetal Neonatal Med 16:145–150PubMed


Bittrich S, Philipona C, Hammon HM, Rome V, Guilloteau P, Blum JW (2004) Preterm as compared with full-term neonatal calves are characterized by morphological and functional immaturity of the small intestine. J Dairy Sci 87:1786–1795PubMed


Bjornvad CR, Schmidt M, Petersen YM, Jensen SK, Offenberg H, Elnif J, Sangild PT (2005) Preterm birth makes the immature intestine sensitive to feeding-induced intestinal atrophy. Am J Physiol Regul Integr Comp Physiol 289:R1212–R1222PubMed


Burrin DG, Stoll B, Jiang R, Petersen Y, Elnif J, Buddington RK, Schmidt M, Holst JJ, Hartmann B, Sangild PT (2000) GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am J Physiol Gastrointest Liver Physiol 279:G1249–G1256PubMed


Caicedo RA, Schanler RJ, Li N, Neu J (2005) The developing intestinal ecosystem: implications for the neonate. Pediatr Res 58:625–628PubMed


Chapman KP, Courtney-Martin G, Moore AM, Ball RO, Pencharz PB (2009) Threonine requirement of parenterally fed postsurgical human neonates. Am J Clin Nutr 89:134–141PubMed


Chauhan M, Henderson G, McGuire W (2008) Enteral feeding for very low birth weight infants: reducing the risk of necrotising enterocolitis. Arch Dis Child Fetal Neonatal Ed 93:F162–166PubMed


Christmas DM, Potokar J, Davies SJ (2011) A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase. Neuropsychiatr Dis Treat 7:431–439PubMed


Cilieborg M, Boye M, Thymann T, Mølbak L, Sangild PT (2010) Preterm birth and necrotizing enterocolitis alter gut colonization in pigs. Pediatr Res 69:10–16


Clark JA, Lane RH, Maclennan NK, Holubec H, Dvorakova K, Halpern MD, Williams CS, Payne CM, Dvorak B (2005) Epidermal growth factor reduces intestinal apoptosis in an experimental model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 288:G755–G762PubMed


Claud EC, Walker WA (2001) Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis. FASEB J 15:1398–1403PubMed


Claud EC, Savidge T, Walker WA (2003) Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr Res 53:419–425PubMed


Clouard C, Meunier-Salaün MC, Val-Laillet D (2012) Food preferences and aversions in human health and nutrition: how can pigs help the biomedical research? Animal 6:118–36PubMed


Courtney-Martin G, Chapman KP, Moore AM, Kim JH, Ball RO, Pencharz PB (2008) Total sulfur amino acid requirement and metabolism in parenterally fed postsurgical human neonates. Am J Clin Nutr 88:115–124PubMed


Courtney-Martin G, Moore AM, Ball RO, Penchar PB (2010) The addition of cysteine to the total sulphur amino acid requirement as methionine does not increase erythrocytes glutathione synthesis in the parenterally fed human neonate. Pediatr Res 67:320–324PubMed


Crissinger KD, Burney DL, Velasquez OR, Gonzalez E (1994) An animal model of necrotizing enterocolitis induced by infant formula and ischemia in developing piglets. Gastroenterology 106:1215–1222PubMed


Cvitkovic S, Bertolo RF, Brunton JA, Pencharz PB, Ball RO (2004) Enteral tryptophan requirement determined by oxidation of gastrically or intravenously infused phenylalanine is not different from the parenteral requirement in neonatal piglets. Pediatr Res 55:630–636PubMed


Dekaney CM, Wu G, Jaeger LA (2003) Gene expression and activity of enzymes in the arginine biosynthetic pathway in porcine fetal small intestine. Pediatr Res 53:274–80PubMed


Dyess DL, Peeples GL, Ardell JL, Tacchi EJ, Roberts WS, Ferrara JJ, Powell RW (1993) Indomethacin-induced blood flow distribution in premature and full-term piglets. J Pediatr Surg 28:1396–1400PubMed


Elango R, Pencharz PB, Ball RO (2002) The branched-chain amino acid requirement of parenterally fed neonatal piglets is less than the enteral requirement. J Nutr 132:3123–3129PubMed


Estall JL, Drucker DJ (2005) Tales beyond the crypt: glucagon-like peptide-2 and cytoprotection in the intestinal mucosa. Endocrinology 146:19–21PubMed


Ewaschuk JB, Murdoch GK, Johnson IR, Madsen KL, Field CJ (2011) Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection. Br J Nutr 106:870–877PubMed


Fanaro S, Chierici R, Guerrini P, Vigi V (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 91:48–55PubMed


Flynn NE, Wu G (1996) An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol Regul Integr Comp Physiol 271:R1149–R1155


Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438PubMed


Grishin AV, Wang J, Potoka DA, Hackam DJ, Upperman JS, Boyle P, Zamora R, Ford HR (2006) Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. J Immunol 176:580–588PubMed


Hallstrom M, Eerola E, Vuento R, Janas M, Tammela O (2004) Effects of mode of delivery and necrotising enterocolitis on the intestinal microflora in preterm infants. Eur J Clin Microbiol Infect Dis 23:463–470PubMed


He QH, Kong XF, Wu GY, Ren PP, Tang HR, Hao FH, Huang RL, Li TJ, Tan BE, Li P, Tang ZR, Yin YL, Wu YN (2009) Metabolomic analysis of the response of growing pigs to dietary L-arginine supplementation. Amino Acids 37:199–208PubMed

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Apr 21, 2017 | Posted by in GENERAL | Comments Off on The Pig Model for Studying Amino Acid-Related Human Diseases: Amino Acids and Intestinal Diseases in Preterm Infants

Full access? Get Clinical Tree

Get Clinical Tree app for offline access