Infectious diseases

Chapter 1


Infectious diseases





Chapter contents



INTRODUCTION


VIRAL DISEASES



BACTERIAL DISEASES OF THE NEONATE AND YOUNG FOAL



BACTERIAL DISEASES OF THE OLDER FOAL AND ADULT



MAJOR INTERNAL PARASITES OF HORSES



OTHER INTERNAL PARASITES OF HORSES




INTRODUCTION


During the last decade the increase in the international movement of horses and trade in semen has contributed significantly to the spread of equine infectious diseases. While trade is the main reason for international travel, extensive temporary movement of horses takes place for competition and breeding purposes. Influenza, equine herpesvirus, strangles, equine arteritis virus, contagious equine metritis, piroplasmosis and Venezuelan encephalitis virus are among the infectious agents that have been spread as a result of international movement. In certain instances, mandatory testing prior to importation has been abolished in order to facilitate trade, and in others horses and semen have been incorrectly certified as disease free.


Veterinarians should inform their clients of the risks and advise them to test imported horses before mixing them with their own stock. It is not known how West Nile virus (WNV) (q.v.) was introduced into the United States in 1999 but this virus has now become endemic in the Western hemisphere. In 2002 over 14000 equine cases were reported with a fatality rate of around 30%. The problem was considered of sufficient magnitude to warrant the production of a vaccine, and mass vaccination of horses in the USA has been undertaken.


Vaccination is one of the most cost effective methods of controlling many infectious diseases. Novel technologies offer opportunities for improving existing vaccines particularly where there are genuine reasons for concern about safety and/or efficacy. Recombinant vaccines are particularly attractive to manufacturers when handling viruses that are human pathogens such as the alphaviruses eastern encephalitis virus (EEV), western encephalitis virus (WEV) and Venezuelan encephalitis virus (VEV) (q.v.) and the flaviviruses Japanese encephalitis virus (JEV) and WNV (q.v.).


Recombinants allow vaccine production under low biocontainment conditions as there is no requirement for large-scale production of a dangerous pathogen. Canarypox virus vector vaccines have recently been licensed for WNV and equine influenza. Such recombinants express the inserted foreign gene(s) in the absence of productive viral replication. A live temperature sensitive intranasal vaccine against equine influenza is now available in North America and like the live recombinant canarypox virus vaccine it provides partial clinical protection in the absence of high levels of serum antibody. This suggests that both vaccines are inducing protective cellular immune responses (q.v.) or priming the immune system so that an effective anamnestic response is rapidly induced on exposure to natural challenge.


Traditionally it has been possible to predict the level of protection that the influenza vaccination has induced by measuring the horse’s levels of antibody against the hemagglutinin. These new vaccines present a challenge to virologists who now need to determine other correlates of protection and develop reproducible methods of quantifying them. Clinicians need not only to inform and advise their clients about alternatives to classical vaccines but also to evaluate them carefully in the field. Second generation vaccines are often more expensive than conventional products. Some products fail to fulfill expectations and their performance in the field does not always reflect the results of experimental challenge studies.


New developments that have the potential significantly to improve the control of certain diseases include a live temperature sensitive equine herpesvirus 1 (q.v.) vaccine, which protects against respiratory infection and viremia, and a gene-deleted live vaccine for equine arteritis virus (q.v.), which allows serologic discrimination between vaccinated and infected horses. The advent of reverse genetics should facilitate the development of live attenuated equine influenza vaccines that can be easily updated as new strains of virus emerge.


The correct treatment and management of a disease depends on an accurate, specific diagnosis. Conditions that are clinically indistinguishable nevertheless frequently necessitate different therapy and management procedures. The latter are particularly important in the case of viral disease. Although there are no antiviral drugs available at present for administration to horses it is important to identify which virus is involved in a disease outbreak. In the case of a training yard experiencing an outbreak of viral respiratory disease, where the aim is to minimize the sequelae and loss of training days, far more stringent management procedures are required if the causal agent is equine herpesvirus 1 than if it is equine rhinitis virus.


The ongoing incorporation of the polymerase chain reaction (PCR) as a routine test in diagnostic laboratories is of major benefit to clinicians in the prompt treatment and management of disease. PCR is a method of amplifying the amount of nucleic acid in a sample. Over a million copies of a specific target DNA sequence can be synthesized in a few hours. Thus viruses and bacteria that can take days or even weeks to propagate in the laboratory can be detected using PCR within 24 h. PCR is an invaluable diagnostic tool. However, it detects the target DNA independently of whether the infectious agent is active, latent or dead and the significance of positive results occasionally needs careful consideration. Furthermore, this sensitive technique carries with it a risk of false positive results due to contamination at the time of collection or in a laboratory. It is important that clinicians adopt the correct procedures when collecting samples and submit their material to a reputable laboratory in order to ensure the reliability of the results.


The use of antimicrobials and anthelmintics has increased significantly in veterinary practice. These products need to be used in a responsible manner to ensure their continuing effectiveness. Multi drug resistance among Salmonella and Pseudomonas spp. (q.v.) isolated from horses has been documented. Methicillin resistant Staphylococcus aureus (MRSA) is a major threat to human patients in hospitals and has been isolated from both horses and personnel in equine hospitals. Many national veterinary associations have now drawn up codes of practice for the judicious use of antimicrobials. It is important that clinicians comply with these codes.


The emergence of anthelmintic resistance (q.v.) is seriously jeopardizing parasite control in many parts of the world. Clinicians need to inform their clients that increasing anthelmintic treatment can lead to the development of resistance and to educate them in management procedures that reduce selection pressure. They also need to monitor resistance and report treatment failure to the product manufacturers and to their national collating centers. Failure to highlight resistance will result in complacency and a failure to invest in the development of new products.


In recent times there has been a huge increase not just in the international movement of horses but also of veterinarians who travel all over the world to work in practices and hospitals and to manage stud farms and racing establishments. Thus, veterinarians need to be familiar with the clinical signs and methods of diagnosis of diseases that occur in different parts of the world, for example African horse sickness, Japanese encephalitis, glanders, rabies, vesicular stomatitis, babesiosis, trypanosomosis, anthrax and Potomac horse fever (q.v.). Veterinarians also need to know which diseases are notifiable in the country in which they are practicing and to be familiar with voluntary “Codes of Practice” such as exist for the control of several bacterial and viral diseases in the United Kingdom, Ireland, Italy, Germany and France (q.v.).


The recent emergence of WNV (q.v.) as a significant pathogen of horses and humans in the Western hemisphere illustrates the need for ongoing cooperation between the veterinary profession, the medical profession and colleagues in Public Health. Australia’s exotic disease preparedness was put to the test with the emergence of Hendra virus (q.v.) in 1994, a disease previously unknown anywhere in the world. Veterinarians, doctors and scientists worked together to control the outbreak, allay public fears, develop rapid diagnostic tests and determine the method of virus spread. We are all at risk from the introduction of exotic diseases and from the emergence of new pathogens. Technological advancements increase our capability each year but the control of infectious disease continues to be a major challenge.



VIRAL DISEASES



EQUINE HERPESVIRUSES


Equine herpesviruses are endemic in horse populations worldwide. Equine herpesvirus abortions result in significant financial loss to horse breeders each year and herpesvirus respiratory disease is a major cause of loss of performance in racehorses and in competition horses.




Etiology

Herpesviruses are enveloped DNA viruses. There are five equine herpesviruses. Equine herpesvirus 1 (EHV-1) is associated with respiratory disease, abortion and a neurologic syndrome. Equine herpesvirus 3 (EHV-3) causes coital exanthema and equine herpesvirus 4 (EHV-4), formerly known as EHV-1 subtype 2, is a respiratory pathogen that has occasionally been associated with abortion. Neither equine herpesvirus 2 (EHV-2) nor equine herpesvirus 5 (EHV-5) has been conclusively implicated in a disease syndrome.


EHV-1 and EHV-4 are more closely related to each other than either is to EHV-2 or EHV-3. They can be differentiated by DNA restriction endonuclease analysis and PCR using type specific primers, or immunofluorescence using specific monoclonal antibodies.


The nucleotide sequence of the entire EHV-4 genome has been determined, as have the sequences of the genomes of two different isolates of EHV-1, one associated with abortion and the second with neurologic disease. It is hoped that the availability of these sequence data will facilitate the identification of virulence markers.



Epidemiology

Serologic studies indicate that infection with EHV-1 and EHV-4 is universally common and that most horses are exposed to these viruses early in life. EHV-4 is more commonly associated with respiratory disease than EHV-1. It is also associated with sporadic abortion but very rarely with neurologic disease.


EHV-4 respiratory disease is endemic in horse populations worldwide. Although the immune response elicited by respiratory EHV-4 infection is not very durable, repeated exposure does lead to a gradual build-up of immunity. Clinical disease is most prevalent in young stock.


The rate of virus spread varies with the age of the horses, the type of husbandry and the training regimen. The spread of the disease in a group of yearlings in a barn can be rapid (within a week) with a morbidity rate of up to 100%. In older horses, virus spread is slower. It is not unusual for EHV-4 to circulate in a training yard for several months with a few different horses becoming infected each week. Infection in older horses is often subclinical but can result in a loss of performance.


EHV-1 is more virulent than EHV-4, and respiratory disease caused by EHV-1 is usually more severe. EHV-1 spreads more rapidly, the morbidity rate is higher and infection can result in neurologic disorders.


Both sporadic and multiple abortions due to EHV-1 infection occur each stud season in countries where horse breeding is an important industry. It is widely accepted that abortion is usually preceded by a respiratory infection that is often subclinical or so mild that it is not readily observed by handlers. Mares in mixed yards are most at risk as horses or ponies can be exposed to the virus at race meetings, shows, hunts or sales and serve as a source of infection for brood mares.


The average incubation period is 3 wk but it has been shown to vary between 9 days and 4 mo. However, it is not feasible to place an upper limit on the incubation period as EHV-1, like all herpesviruses, has the ability to establish a latent infection and to reactivate at any stage during the host’s lifetime. Abattoir surveys suggest that the majority of adult horses are latently infected. Stress factors such as transport over long distances or illness may induce a reactivation of latent virus and precipitate abortion.


Although abortion due to EHV-1 infection usually occurs during the last third of pregnancy, it has been recorded as early as 4 mo and a foal may be carried to term and born alive but infected.


Fetuses aborted as a result of EHV-1 infection are heavily contaminated with virus and serve as a source of infection to other horses that come in contact with them. Thus, multiple abortions often follow the abortion of a fetus in a field where several pregnant mares are grazing. Up to 100% of mares exposed to virus on a stud farm may abort but the morbidity rate is usually lower.


EHV-1 abortion appears to stimulate a durable protective immune response and it is unusual for a mare to abort more than once following exposure to EHV-1.


Abortions due to EHV-4 infection are uncommon and usually sporadic in nature.


EHV-1 neurologic disease is uncommon but since it was first recognized in 1966 it has been recorded in all parts of the world where large numbers of horses are maintained. A few cases occur annually in many countries. The disease has occurred in association with respiratory disease and/or abortion in competition yards, in training yards and on stud farms. Outbreaks have been recorded on stud farms with no concurrent cases of EHV-1 abortion.


Horses of all ages and both sexes can be affected but recently foaled mares seem to be most susceptible. Morbidity may be as high as 100% in some groups of horses. The disease can be fatal and severely affected cases necessitate euthanasia. Direct contact seems to be necessary for transmission of virus. Affected horses may remain viremic for extended periods and in some outbreaks new cases arise over several months.


EHV-4 has only rarely been isolated from cases of neurologic disease and its role in the etiology of the disease needs to be elucidated.


Outbreaks of coital exanthema caused by infection with EHV-3 are frequently observed during the breeding season. Transmission is primarily by the venereal route. Clinically, stallions are less severely affected than mares but many show a reactivation of latent virus each season and infect the mares they cover. Lesions are sometimes observed on the mammary glands of mares and the muzzles of foals.


EHV-2 is endemic worldwide and is commonly isolated from healthy horses. Sick foals shed large quantities of EHV-2 and the virus has been associated with keratoconjunctivitis (q.v.).



Clinical signs







Pathogenesis


Abortion

Our current understanding of the mechanism by which a virus is transported to the fetus is that EHV-1 infected peripheral blood mononuclear cells, predominantly monocytes and T lymphocytes, carry virus to sites of replication such as the endothelium of endometrial blood vessels. Studies using PCR indicate that the virus establishes a latent infection in leukocytes but the factors involved in reactivation of virus and the activation of endothelial cells to facilitate the adhesion of their surface receptors to infected leukocytes need to be elucidated.


It appears that fetal infection is not a prerequisite for EHV-1 induced abortion and a severe infection of the endometrium can result in extensive thrombosis and ischemic infarction (q.v.) which in turn lead to premature placental separation and abortion of a virologically negative fetus. However, this appears to be relatively uncommon and in most cases the virus is transferred across the uteroplacental barrier, the fetal viscera are infected and a fetus with characteristic necrotic lesions and significant virus load is expelled. It has been suggested that it is the endotheliotropism of the virus strain that determines the degree of thrombosis and thus the outcome of virus challenge. However, not all abortigenic isolates are endotheliotropic and it is likely that the outcome of infection is also influenced by host factors.



Neurologic disease

Outbreaks of EHV-1 paralysis are much more uncommon than outbreaks of respiratory disease or abortion and the factors which predispose to their occurrence have not been identified. The occurrence of large abortion storms without concurrent neurologic signs militates against the size of the virus challenge being the predominant factor.


EHV-1 differs from several other herpesviruses in that it does not appear to be primarily neurotropic. The severity of the clinical signs can be correlated to the degeneration of neural tissue but this degeneration is due to hypoxia initiated by vasculitis. Damage to vessel walls leads to a flow of plasma proteins into perivascular sites impeding the exchange of blood and tissue metabolites in adjacent areas. In the central nervous system (CNS) this results in malacia (q.v.). It has been suggested that the condition may be the result of an immunologic process and that inflammatory changes in the CNS may be a reaction to virus antigen and antibody complexes.



Post mortem findings


Abortion

The most consistent lesions in aborted fetuses and foals that die soon after birth are severe pulmonary edema, petechiation of the mucous membranes, excessive fluid in the pleural and peritoneal cavities, jaundice, splenomegaly and areas of focal necrosis in the liver.


Microscopically, the lesions are bronchiolitis, pneumonitis and necrosis of the spleen and liver. Acidophilic intranuclear inclusion bodies are found in the affected tissues and the presence of EHV antigen may be detected by immunohistochemical methods such as immunofluorescence and immunoperoxidase.


Fetuses aborted prior to the sixth month of gestation are often severely autolyzed. In such cases the classic lesions of EHV-1 abortion may not be present but the intranuclear inclusion bodies will be observed on histologic examination.



Neurologic disease

Gross pathologic findings in horses with the neurologic syndrome are often minimal. There is usually congestion of the mucous membranes and petechial, ecchymotic and hemorrhagic changes are often widespread. Hemorrhage around the spinal nerve roots is a common finding. Foci of malacia in the brain and spinal cord may be visible macroscopically. Intussusception (q.v.) has been observed in foals.


The predominant histopathologic changes are vasculitis and degeneration of nervous tissue. A non-suppurative inflammation of the blood vessels is accompanied by thrombosis and hemorrhage and exudation of plasma into the perivascular tissues. The arteries and arterioles of the CNS are principally affected but vasculitis is sometimes evident elsewhere in the body, for example in the endometrium of pregnant mares, uvea and lungs. Veins are affected less frequently but sometimes more severely.


Axons in the brain and spinal cord are often swollen and dystrophic. Foci of malacia in both gray and white matter, gliosis and neuronal degeneration are the most consistent findings in the CNS.




Diagnosis


Respiratory disease

Upper respiratory tract infection caused by EHV must be differentiated from equine rhinovirus, equine influenza virus, equine arteritis virus, bacterial infections and allergic rhinitis (q.v.).


Serologic diagnosis can be made on the basis of a significant rise (4-fold or greater) in antibody titer, which requires the collection of blood samples during the acute stage of the disease and 10–14 days later. The majority of diagnostic laboratories routinely use the complement fixation test (CFT) for the measurement of EHV antibodies. CF antibodies against EHV-1 and EHV-4 tend to reach a peak 10–14 days post infection and usually decline to their original level within 3 mo. Serum neutralizing (SN) antibody titers persist for longer than CF antibodies and are a less reliable indicator of recent exposure.


Because of close antigenic relatedness, infections with EHV-1 and EHV-4 are difficult to differentiate on the basis of serology. A type specific enzyme-linked immunosorbent assay (ELISA) has been used extensively in epidemiologic surveys but it is not quantitative and has not replaced more conventional techniques in the majority of diagnostic laboratories.


Equine herpesviruses are isolated in tissue culture. EHV-1 will grow on a variety of commercially available cell lines such as rabbit kidney cells (RK13) but EHV-4 is more fastidious and with a few exceptions tends to grow only on cells of equine origin. Virus isolates can be typed by immunofluorescence with specific monoclonal antibodies or by PCR. PCR can also be used for rapid virus detection in diagnostic samples and in some laboratories has been shown to be more sensitive than virus isolation. Some caution must be exercised in the interpretation of positive PCR results for blood samples as leukocytes are a site of latency for EHV-1 and EHV-4. The isolation of EHV-1 or EHV-4 from a nasal swab depends on the amount of virus the horse is shedding at the time of sampling. Although virus isolation is sometimes achieved within 24 h, it can take 2 wk or more. PCR can yield a result in less than a day.



Abortion

Diagnosis of EHV abortion is routinely based on post mortem examination of the fetus and on virus isolation. Samples of liver, lung, spleen, adrenal, thymus and kidney from every aborted fetus should be submitted to a virus isolation laboratory for routine screening for EHV. This also applies to the remainder of any fetus that has been partially eaten by predators as the virus can survive for several weeks in a moist environment.


A fetus aborted as a result of EHV infection is usually heavily contaminated with virus. Thus, EHV-1 can often be isolated from positive cases and typed within 48 h. EHV-4 tends to grow more slowly than EHV-1 in tissue culture. Most laboratories passage fetal tissue for at least 1 wk in tissue culture before they declare them negative. PCR is type specific and can be used to detect virus within 2 4 h of receipt of tissue samples.


The recent finding that naturally infected mares can abort virologically negative fetuses poses a problem for both pathologists and virologists and indicates the importance of placental examination.


It is not possible to diagnose EHV abortion by serologic examination. Some mares do not have a significant antibody titer at the time they abort. Alternatively, a mare may have a significant antibody titer due to exposure to virus by vaccination or by a natural infection that did not induce abortion.


EHV infection in neonatal foals can be confirmed by the isolation of virus from a nasal swab or heparinized blood. Serologic examination is not a suitable means of diagnosis.



Neurologic disease

As the nervous signs do not manifest for about 10 days post infection, the majority of horses suffering from EHV neurologic disease have high antibody titers against the virus. Thus, the examination of a single serum sample is often a useful diagnostic aid. Some mares are slow to seroconvert and examination of paired sera is necessary in a minority of cases.


In the case of an outbreak of the neurologic form of the disease, it is usually possible to isolate EHV-1 from the nasal secretions and leukocytes of some of the affected horses. Heparinized blood samples (a minimum of 20 mL per horse) are particularly useful as many horses experience prolonged viremia.


If horses die or are euthanased, a diagnosis can be made by pathologic investigation. EHV-1 antigen may be detected using immunoperoxidase or immunofluorescence techniques and virus can be isolated from the brain or spinal cord.




Management and control


Respiratory disease

Both killed and live attenuated EHV-1 vaccines were widely used for many years to protect horses against equine herpesvirus respiratory disease, but their use met with only limited success. More recently, vaccines containing both EHV-1 and EHV-4 (e.g. Duvaxyn EHV 1,4 [Fort Dodge Animal Health] and Resequin [Intervet], available in Europe, and Prestige [Intervet] and Equi Guard [Boehringer Ingelheim] available in the USA) have been introduced and although they reduce virus shedding, they do not necessarily offer complete protection against clinical disease. However, regular use of such vaccines at strategic times in a training program (such as prior to or when there is a break in intensive training periods and attendance at race meetings) appears to lessen the effects of virus challenge and decrease the recovery time.


The serologic monitoring of horses on a regular basis serves as a useful aid to the early detection of EHV in a yard. If EHV is detected, it is of the utmost importance to have the virus type determined in a specialist laboratory by PCR or other reliable method.


It is rarely practical or advisable to close a yard with an EHV-4 problem, but it is usually possible to control the disease by careful monitoring of all the horses and identification and isolation of those that are affected. Horses with clinical respiratory disease and those that show signs of depression or inappetance should be isolated from healthy horses and adequately rested before a gradual return to full work. The use of antibiotics, mucolytics and bronchodilators may be indicated in horses with secondary bacterial infection.


Return to work too soon may result in chronic respiratory problems or the reactivation and shedding of latent virus. Because the virus usually spreads quite slowly in a group of horses it is not unusual for some horses from an infected yard to continue to perform well. However, care must be taken not to over-stress subclinically infected animals. Serologic testing will help to identify these horses.


EHV-1 respiratory disease constitutes a greater threat to a training yard than EHV-4. Because of the abortigenic potential of the virus, no horse should be allowed to move from an infected yard to one that contains brood mares. When deciding whether or not to close the yard it should be remembered that EHV-1 can cause paralysis and that there is some evidence to suggest that stressing animals that are incubating the virus may precipitate this condition.



Abortion

A combination of good management and vaccination helps to reduce the threat of EHV abortion. The regular use of a vaccine of proven efficacy, preferably containing both EHV-1 and EHV-4 (e.g. Duvaxyn EHV 1,4 [Fort Dodge]), during each gestation period is recommended. There are many vaccines on the market but only one product, Duvaxyn EHV 1,4, is currently licensed in the EU for use in the prevention of EHV-1 associated abortions. Similarly, only Pneumabort K + 1B (Fort Dodge) and Prodigy (Intervet) have an abortion claim in the USA. A live temperature sensitive EHV-1 vaccine has recently been developed in the UK and the experimental data look promising. This vaccine protected pregnant mares for up to 6 mo after a single intranasal inoculation. In comparison the inactivated vaccines need to be administered at 5, 7 and 9 mo of each gestation.


Properly vaccinated mares rarely abort due to EHV infection unless they are stressed or exposed to a large virus challenge and multiple abortions on studs with a stringent vaccination policy are uncommon. Commercial studs should be advised not to accept unvaccinated pregnant mares or, if this is not possible, to keep them isolated (i.e. in a separate field or barn) from other mares.


Wherever possible, brood mares should not be kept in close proximity to other horses such as racehorses, showjumpers, yearlings and children’s ponies. If mares are kept on mixed premises they should always be handled before other horses. Horses returning from sales, race meetings and competitions should be isolated from the brood mares.


It is important to minimize stress to pregnant mares. There is a risk in transporting heavily pregnant mares over long distances. All pregnant mares, particularly those that have traveled long distances and those from sales yards, should be isolated on arrival at a stud. Horse boxes should be regularly cleaned and disinfected with a product which is active against herpesviruses.


All cases of abortion, stillbirth or foal death within 14 days of birth should be treated as suspect virus abortion. The fetus and the placenta should be submitted to a recognized diagnostic centre for pathologic investigation. The mare should be placed in isolation in case she is shedding virus. If she aborted in a stable, the bedding should be sprayed with disinfectant such as Virkon (Antec International) at a dilution of 1:100 and left for 48 h, after which it can be removed and burned. If she aborted in a field in the company of other mares, these mares should be isolated until further investigation is completed. No horse should be removed from the premises until the possibility of virus abortion has been excluded.


Common Codes of Practice* exist for the control of contagious equine reproductive diseases in the United Kingdom, Ireland, France, Germany and Italy. It is likely that these Codes will extend to all member states of the European Community in the future.


The correct procedure for the management of herpesvirus abortion is documented in the Code and is applicable to any premises where the owner is concerned to reduce the spread of the disease. The major points in the Code concern the movement of horses from the infected premises. All pregnant mares must remain on the infected stud until they foal. All other horses must remain on the stud until 1 mo after the last abortion. At this time, the infected stud’s own non-pregnant mares, including those that aborted, can visit other studs to be covered subject to the full agreement of the receiving stud. The receiving stud should keep these mares isolated from pregnant mares.


The sampling of horses on infected premises for virus isolation and serologic examination for evidence of exposure to virus will assist a breeder in making decisions about the movement of horses within the stud farm. The cohorts of the mare that aborted should be isolated from other pregnant mares. Pregnant mares should be divided into small groups to minimize the spread of virus. If possible, each pregnant mare should be allotted a separate field or paddock so that if she aborts, her fetus does not serve as a source of virus for other pregnant mares.



Neurologic disease

If the neurologic form of EHV disease is confirmed, no movement should be allowed on or off the infected premises. All horses should be rested immediately as stress exacerbates the condition. In the case of a stud farm, covering should cease and because of the abortigenic potential of the virus, pregnant mares should be divided into small groups and kept on the premises until they have foaled.


The treatment of the neurologic disease is predominantly supportive and with good nursing care the majority of affected horses will recover. Ataxic horses (q.v.) should be stabled with deep bedding. Recumbent horses should be propped up in the sternal position if possible. Horses in lateral recumbency should be rolled frequently. Abdominal slings are useful to decrease muscle damage and the development of decubital ulcers.


Inappetant horses may need to be fed by stomach tube. Manual emptying of the rectum and bladder catheterization may be necessary. Immunosuppressive doses of corticosteroids have been administered during some outbreaks on the basis that this might prevent immune-mediated vasculitis. Neither the efficacy of this therapy nor that of anti-inflammatory drugs (flunixin meglumine, DMSO), vitamin E and aciclovir has been determined. Mildly uncoordinated horses often recover within a few days, but horses that become recumbent usually take much longer and may never recover completely.


The decision to allow movement on and off the premises should only be taken when there is no evidence by serologic examination or by virus isolation that the virus is still circulating. This may take several months.




EQUINE INFLUENZA




Etiology

Equine influenza viruses are RNA viruses of the orthomyxovirus group. They are categorized as type A on the basis of the antigenicity of their internal proteins and are divided into two subtypes on the basis of the antigenicity of the surface proteins hemagglutinin (H) and neuraminidase (N). H and N account for 25% and 10% of the viral protein mass respectively.


Influenza viruses are codified according to their type, host species, subtype, and place and year of isolation. This is often followed in parentheses by the H and N subtypes. Thus the prototype of equine 1 influenza viruses is designated A/equine 1/Prague 56 (H7N7) and the prototype of equine 2 influenza viruses is designated A/equine 2/Miami 63 (H3N8).


The genes encoding H and N frequently mutate giving rise to antigenic drift. Influenza viruses are also subject to major changes in antigenic composition known as antigenic shift. This can occur due to reassortment of the H and N genes.


Equine influenza viruses are very labile and show very little resistance to disinfectants customarily used for viral infections.



Epidemiology

Although equine influenza is often associated with disease epidemics, it also causes sporadic outbreaks of disease in populations that are partially immune and is a persistent problem in parts of Europe and North America. Outbreaks of disease have been reported in South America but the disease has not yet been recorded in Australia, Iceland or New Zealand.


Equine influenza is contracted by inhalation. There is no evidence that horses become chronically infected with the virus. Epidemics often start at equestrian events where horses congregate in large numbers. The disease is then disseminated over a wide area following the dispersal of horses after the event. The incubation period varies from 1 to 5 days and depends primarily on the size of the virus challenge. The virus is extremely contagious. The short incubation period and persistent coughing, which releases large amounts of virus into the atmosphere, contribute to the rapid spread of the disease.


In a susceptible group of horses, morbidity can be as high as 100%. Mortality is usually low but can be as high as 10% in foals, donkeys and affected horses that are not adequately rested. The severity of the disease depends primarily on the immune status of the horses at the time of exposure, the environment and the amount of stress to which the animals are subjected.


Antigenic variation and failure to vaccinate are major contributing factors to influenza epidemics in countries where the disease is endemic but the most devastating epidemics occur when influenza virus is introduced into an immunologically naïve population. In India in 1987, over 27 000 Equidae were affected and several hundred animals died. In South Africa in 1986 race meetings were canceled for over 5 mo because of the influenza epidemic that resulted from the introduction of the virus into the country for the first time. In the 1989 epidemic in northeastern China, the overall morbidity rate was 80%; the mortality rate was 20%, but rose to 35% in certain groups.


Equine 1 influenza virus was first isolated in Czechoslovakia in 1956 and was subsequently detected in several European countries and in America. Although two international surveys have indicated that no equine 1 influenza viruses have been isolated anywhere in the world for more than a decade, there is some serologic evidence to suggest that they still persist. A/equine 1/Prague 56 or similar H7N7 virus is still included in influenza vaccines in many countries.


Equine 2 influenza virus was first isolated in Miami in 1963 and has continued to cause outbreaks of disease in Europe and North America ever since. Type 2 influenza viruses are less stable than type 1. Antigenic variants can give rise to large-scale disease epidemics such as occurred in 1979–1981 in Europe and in North America. The antigenic variant responsible for these epidemics was subsequently incorporated into the vaccines and annual vaccination for racehorses and competition horses became mandatory in several European countries.


Following the implementation of a mandatory vaccination policy in 1980, equine influenza was not diagnosed in Ireland and the UK for almost a decade. In 1989 both countries experienced an influenza epidemic. Genetic analysis of one of the viruses isolated in the UK, A/equine 2/Suffolk 89, demonstrated that it was significantly different from the prototype strain of the previous epidemic, A/equine 2/Fontainbleau 79. This led to a recommendation that A/equine/Suffolk 89 or similar isolate be included in influenza vaccines.


Further analysis of influenza A H3N8 viruses isolated in different continents demonstrated that there was an acceleration of H evolution in the late 1980s and that two separate lineages evolved. These have been designated European and American, based on the predominant geographic origin of the viruses. Co-circulation of viruses from both lineages can occur; for example, in the UK a European strain A/equine/Newmarket/2/93 was isolated at the same time as A/equine/Newmarket/1/93—an American strain from horses in the same yard. There is some evidence to suggest that the differences between the American and European lineages are sufficient to compromise cross-lineage protection after vaccination or infection.


Equine influenza viruses appear to be more stable than their human counterparts and no antigenic shift due to reassortment has been described in influenza viruses isolated from horses. Only viruses with the combinations H7N7 and H3N8 have been described in horses. However, shifts may occur not only by genetic reassortment but also by mutation of an avian virus or other mammalian virus so that it becomes infectious for horses. The 1989 epidemic in northeastern China appears to have been caused by a virus that is more closely related to the influenza viruses of aquatic birds than to other equine influenza viruses. The prototype virus from this epidemic, A/equine 2/Jillin 89 (H3N8), is thought to be the latest mammalian influenza virus to emerge from the avian influenza gene pool, although it is no longer infectious to ducks which reduces the possibility of spread by aquatic birds during migratory flights. In 2004, there was a suggestion from the University of Florida that a strain of equine influenza virus may have infected dogs.



Clinical signs

Both subtypes of equine influenza viruses produce similar clinical signs in horses, but equine 2 infections are usually more severe. The first sign is an elevation in body temperature (up to 41°C) which is usually biphasic. This is followed within a few hours to a maximum of 2 days by a dry deep cough.


The other most commonly observed clinical signs are a serous nasal discharge, which may become mucopurulent due to secondary bacterial infection, myalgia, inappetance and enlarged mandibular lymph nodes. Edema of the legs and scrotum is sometimes observed and spasmodic and impaction colic (q.v.) have been reported.


Horses usually recover clinically from uncomplicated influenza within 10 days but coughing may persist for longer. Secondary bacterial infection prolongs the recovery period. Pneumonia (q.v.) may occur in foals, horses that are stressed by strenuous exercise, and donkeys, which are more susceptible to influenza than horses.


Equine 2 viruses are more pneumotropic than equine 1 viruses and have also been associated with myocarditis (q.v.). Pregnant mares may abort or resorb the fetus as a result of fever. Sequelae of equine influenza can include chronic pharyngitis, chronic bronchiolitis, alveolar emphysema which can contribute to chronic obstructive pulmonary disease (COPD), sinusitis and guttural pouch infections (q.v.).


Equine influenza may be mild or even asymptomatic in horses protected by recent or regular vaccination or by previous exposure.




Diagnosis

The classical signs of influenza that are seen in unvaccinated horses are easy to recognize. The two major features of the disease are its rapid spread and the dry deep cough.


Diagnosis of equine influenza in a vaccinated population is more difficult as the clinical signs may resemble more closely those caused by other pathogens such as equine rhinovirus, equine herpesvirus or bacterial infection (q.v.) than classical influenza. A definitive diagnosis can only be made by isolation or detection of the virus from/in nasopharyngeal swabs or by serologic examination.


To isolate virus, nasal secretions collected in virus transport medium during the acute phase of infection should be kept cold but not frozen and transported to a specialist laboratory as quickly as possible. The samples are inoculated into the allantoic or amniotic sacs of 8–12-day-old chick embryos. After incubation at 33°C for 3 days the amniotic or allantoic fluids are harvested and tested for hemagglutinating activity. Some laboratories also isolate influenza virus using cell monolayers.


The presence of influenza virus can be confirmed and its antigen type determined by hemagglutination inhibition (HI) using specific antisera. Faster ELISA such as the Directigen Flu A (DFA) test have been developed for the detection of influenza antigen. The DFA takes approximately 15 min and is simple to perform. It requires no specialized equipment and can be performed by personnel that are not specially trained in virologic techniques. However, it is less sensitive than PCR; PCR requires a longer time to get a result than DFA but is considerably faster than virus isolation. Virus isolation remains essential for ongoing strain surveillance. In a recent study evaluating different viral detection methods in nasal secretions collected after experimental challenge, viral isolation and RT-PCR proved to be the most sensitive methods. The DFA test was the least sensitive method.


Clotted blood samples are required for serologic examination. Using the HI test, a sample taken in the acute stages of the disease can be compared with a sample taken 10–14 days later and a significant rise in type-specific antibodies will be readily detectable. Seroconversion can also be detected by single radial hemolysis (SRH). The HI test is simpler and less time consuming but the SRH is easier to standardize between laboratories.

< div class='tao-gold-member'>

Stay updated, free articles. Join our Telegram channel

Jul 8, 2016 | Posted by in EQUINE MEDICINE | Comments Off on Infectious diseases

Full access? Get Clinical Tree

Get Clinical Tree app for offline access