Chapter 9 Approach to Diagnosis and Initial Treatment of the Toxicology Case
For most veterinary practitioners, poisoning cases are not the most frequent presentation. Despite this, poisoned animals can demand extensive effort from the practitioner and often involve emotion and publicity. The public expects the veterinary profession to provide professional guidance in the single poisoning case or series of cases with a calm and coherent approach.
Accurate diagnosis is the key to approaching a potential poisoning case. Such a diagnosis can allow for adequate treatment of poisoned animals and can prevent additional cases. Unfortunately, there is no simple procedure that will test for all toxicants. Rather, these cases require a multifactorial approach that involves assembling a diagnostic puzzle. Information to be compiled includes a complete case history, clinical and clinicopathological data, postmortem findings, results from chemical analyses, and occasionally bioassay findings.1 The approach to the toxicology case presented here emphasizes helping small animal veterinarians provide high-quality initial care and diagnosis for the poisoned animal.
CASE PRESENTATION
The small animal practitioner usually must treat one or a few animals, unlike the livestock veterinarian, for whom a toxicology case is more likely to involve large numbers of animals, with emphasis on herd health, economics, and food safety in addition to the welfare of an individual. The small animal case presents a further challenge because a wandering animal’s recent whereabouts is not always known. The environment is usually well defined for livestock. For example, a pasture can be searched for a toxic plant that has caused colic in a horse, but finding the antifreeze, pesticide, or garbage that caused gastroenteritis in a wandering pet may be much more difficult.
As mentioned earlier, diagnosis of a toxicology problem involves the assimilation of several classes of data, including the history, clinical signs, clinical chemistry, the presence or absence of lesions, analytical chemistry, and occasionally bioassay.1,2 Evidence from one class of data rarely provides a definitive diagnosis in the absence of the others. For example, a dog with increased salivation, dyspnea, vomiting, and diarrhea might have a low blood cholinesterase level. Analysis for an organophosphorus or carbamate insecticide may be negative, yet the animal may have responded to atropine therapy. Historical review of the case might suggest exposure to a short-lived carbamate insecticide (nondetectable at sampling), exposure to a pond with neurotoxic algae, or exposure to a nicotinic plant, such as tree tobacco (Nicotiana glauca) or poison hemlock (Conium sp).1
HISTORY
A thorough review of a case history will help to identify sources of a toxicant, predisposing factors, situations compatible with exposures, toxicant dose, and clinical signs.3 The environmental and past medical history should be taken along with that of the current problem. Although the initial investigation may be performed in a clinic, the practitioner may want to visit a site to help the owners identify hazards or conditions that might promote exposure to potential toxicants.4
The time of the year can also yield important clues. Car radiators are replenished in the autumn, leading to antifreeze exposures. Recent animal movements should be noted. Be sure to inquire about the sources of feed and identify new or different feed sources. Animal husbandry practices, such as types of feeds used or exercise patterns may help identify sources common to affected animals. The practitioner should discreetly note cultural traits that may yield information about exposure to drugs, herbal medications, or unusual foods.
Throughout the investigation, samples of potential source material should be saved. If the owner suspects a problem from the environment or perhaps the feed, a sample of that material should be obtained along with any label or other identification. One should insist on getting a sample of the feed or source material before a vendor is contacted. Otherwise, source materials have been known to “disappear.” It is best if the practitioner can also label the material, writing down the exact location where the sample was collected, the person(s) collecting it, the date, and the case involved along with his or her name, practice address, and telephone number. Samples of vomitus or moist materials can be carefully frozen (see Table 10-1). Dry feeds and other sources can be stored in a cool, dark, dry place. Plants to be identified can be submitted fresh to a diagnostic laboratory or other plant expert (including herbaria, local colleges, and plant stores) if the submission can be made quickly. Otherwise, it is best to press the plant carefully in an old newspaper between some books and then submit the dried plant. Mushrooms should also be submitted dry for identification. Avoid placing mushrooms or moist plants in plastic bags and putting them in the refrigerator. They tend to rot in that environment, making later identification very difficult.
EXPOSURE ASSESSMENT
As Paracelsus instructed, “The dose determines the poison.”5 Almost all compounds, including water, may be toxic if a susceptible animal is exposed to a sufficient quantity. Consideration of dose-response involves multiple factors in addition to the animal-related factors affecting previously mentioned toxicity. These factors include the magnitude of the dose, the frequency of exposure, and the slope of the dose-response curve for the animal’s species, age, nutritional status, disease status, gender, and many other related factors.
If a sufficient amount of a toxicant is ingested, acute poisoning may occur after one exposure. At lower levels, however, a toxicant may not cause disease until after it has been ingested repeatedly or until a sufficient amount of the chemical has accumulated at the receptor site. For example, repeated daily doses of compounds that can accumulate, such as an anticoagulant rodenticide like brodifacoum or a metal like lead, are toxic at much lower levels than a single acute dose. Additionally, for some compounds, the signs of chronic toxicosis can be different from the acute signs. A bird that has been soaked in an organochlorine insecticide may develop neurological signs and die. Daily exposure to low levels of the organochlorine, however, may not cause acute toxicosis. Rather, chronic long-term effects may result, leading to abnormal reproduction, including eggshell thinning and liver degeneration.
The toxicity of a compound may be expressed in terms of kilograms of source material and in terms of kilograms of exposed animal body weight. Generally, the practitioner is faced with a determined concentration of a substance in feed or a source material, and a known (through the literature usually) level of toxicity in the animal. Thus the likely amount taken in by the patient is calculated as follows: