Bacillus species

Chapter 14


Bacillus species




Genus Characteristics


Bacillus species are large, Gram-positive, endospore-forming rods. They are known to produce resistant endospores in the presence of O2 with one exception, B. infernus. This large genus accommodates approximatively 100 species including the well-known zoonotic agent B. anthracis. The bacilli can be divided into three main groups: B. subtilis group (B. subtilis, B. licheniformis, B. pumilis, and B. amyloliquefaciens), B. cereus group (B. anthracis, B. cereus, B. mycoides and B. thuringiensis) and B. circulans group (B. circulans, B. firmus, B. coagulans and B. lentus). Most species are mesophilic.


Although Bacillus species are Gram-positive in young cultures, they can appear Gram-variable or even Gram-negative on account of their spores. They are usually catalase-positive, aerobic or facultatively anaerobic and motile with the exception of B. anthracis and B. mycoides. Most will grow on nutrient agar but not on MacConkey agar. Bacillus anthracis, the agent of anthrax, is an important pathogen of animals (mainly herbivores) and humans and a potential biological weapon.



Natural Habitat


Most of the numerous Bacillus species are saprophytes widely distributed in air, soil and water. Bacillus spores can survive in a wide variety of habitats since they are resistant to heat, radiation, disinfection and desiccation. Spores can remain dormant in soil for decades. The main habitats are considered to be all sorts of soils and waters. Some Bacillus species are opportunistic pathogens (B. cereus, B. licheniformis) while B. anthracis is considered an obligate pathogen of animals and humans.


Bacillus anthracis spores are geographically ubiquitous in soils. This bacillus most commonly infects ungulate herbivores. It has been reported that in nature the spores are associated with fairly heavy particles and are not likely to become airborne at carcass sites, despite rain, wind or some soil agitation (Turnbull et al. 1998). In nature, the vegetative form of B. anthracis seems to exist only in a host and is not found in the environment.



Pathogenesis and Pathogenicity



Anthrax


Bacillus anthracis is considered the major animal pathogen in the Bacillus genus (Table 14.1) causing anthrax in herbivores and other mammals, including humans. In general, three main clinical forms have been described to date in the literature: cutaneous, gastrointestinal and respiratory (Hanna 1998). However, this classification is less useful in veterinary medicine, where anthrax is viewed as a singular disease that rapidly progresses to death without any specific clinical signs. It is often characterized by a massive septicaemia where hypotension, shock and sudden death are mainly attributed to the lethal toxin (LeTX). In contrast, in human cases of anthrax the symptoms precede death over many days. Animal anthrax is therefore difficult to treat because of the rapid onset of the condition. A mortality rate of approximatively 100% is reported for animal systemic infections. Susceptibility to the disease is variable among different animal species. Cattle, sheep and goats are most susceptible to infection, horses and humans occupy an intermediate position, while pigs, birds and carnivores are comparatively resistant, but can succumb if the infective dose is high. Disease has also occurred in bison, white-tailed deer, ostriches, mink and moose. Rats and some strains of mice are considered resistant.



In cattle, sheep, and goats anthrax is considered a peracute disease characterized by septicaemia with high fever and sudden death (within one or two days). In some cases, the disease may last for about a week. Postmortem findings include exudation of tarry blood from body orifices, failure of the blood to clot, incomplete rigor mortis and splenomegaly in cattle. Indeed, a typical characteristic of anthrax is the failure of blood to clot following death. In the less susceptible species inflammatory subcutaneous oedema of face, throat and neck is a common finding and colic can occur in horses and gastroenteritis in carnivores. Sporadic disease and outbreaks have been observed in pigs where the condition was characterized by swelling of the throat and/or digestive disturbances with a low mortality rate (Edginton 1990, Williams et al. 1992). Research has suggested that meat from healthy pigs killed 21 days after the last case following an outbreak of anthrax should not pose a public health risk (Redmond et al. 1997).


Anthrax occurs when endospores of B. anthracis gain entry to a host through ingestion, from soil when grazing or in contaminated food, through abrasions of the skin or following inhalation. Inhalation occurs to a lesser extent in animals than in humans. Transmission by biting insects may be important especially during an outbreak. Following entry, the endospores are rapidly phagocytosed by macrophages and then germinate inside the macrophages. Vegetative bacteria are released into the blood in which they rapidly multiply to high numbers. Virulence of most B. anthracis strains is associated with two megaplasmids (Table 14.2). Strains lacking either plasmid are avirulent or significantly attenuated. Plasmid pXO1 carries the genes for the anthrax tripartite protein toxin complex (Okinaka et al., 1999), while plasmid pXO2 carries the biosynthetic genes for the antiphagocytic poly-D-glutamic acid capsule. The anthrax tripartite toxin comprises three components: a protective antigen, a lethal factor and an oedema factor. These proteins act in binary combinations to produce the two anthrax toxins (Leppla 1995): oedema toxin (protective antigen and oedema factor) and lethal toxin (protective antigen and lethal factor). Capsule and toxin virulence factors seem to be regulated by host-specific signals such as CO2 concentration.



Humans can incidentally acquire the disease by contact with endospores from infected animals or their contaminated products or from a bioterrorism source. About 95% of human anthrax cases are the cutaneous form, 5% respiratory, while the gastrointestinal form is very rare. There are no known cases of human-to-human transmission. Only a few endospores are required to cause cutaneous anthrax, while the infectious doses in gastrointestinal and respiratory forms are usually very high (50% lethal dose > 10,000 spores). Cutaneous anthrax cases are readily treated and become life-threatening only on exceptional occasions. The skin lesion starts with a pruritic papule which evolves to a painless black eschar (Dixon et al. 1999). The respiratory and gastrointestinal (GI) forms are both highly fatal forms of the disease if not treated. The gastrointestinal form usually occurs two to five days after the ingestion of spores from contaminated meat or food products. The respiratory form occurs after the inhalation of endospores usually by workers handling contaminated animal products or hides (Woolsorter’s disease). Endospores can remain dormant for more than 60 days in the lungs (Barakat et al. 2002).



Sporulation process

Bacillus anthracis will sporulate in an opened (aerobic conditions) carcass under decomposition where conditions of nutrient deprivation result in mature endospores. The sporulation process can be simplified into four steps:



Bacillus anthracis endospores are basically made of four structures: the core, the cortex, the spore coat, and the exosporidium. They contain protein, DNA, calcium, dipicolinic acid (DPA), a paracrystaline lipid bilayer, a thick cross-linked peptidoglycan and a collagen-like surface protein named BclA (Bacillus collagen-like protein of anthracis). Endospores are inert with no measurable metabolism and will not divide like vegetative cells. They have no ATP, no synthesis and very little or no water. The germination process occurs within the host and is triggered by various nutrient germinants which contact receptors on the spore itself. This causes the release of chelated Ca2+-dipicolinic acid from the spore core and hydration as water floods the core. Expulsion of DPA activates cortex lytic enzymes that degrade the spore cortex allowing germination to progress.



Other bacilli


The majority of the other Bacillus species have little or no pathogenic potential but can occur commonly as contaminants on laboratory media. Table 14.1 summarizes the main hosts and diseases of the pathogenic bacilli. Bacillus cereus is best known as a cause of food-borne illness in humans and occasionally affects animals, mainly dogs and cats (Chastain & Harris 1974). Bacillus cereus can produce two types of food-poisoning: the diarrhoeal type and the emetic type. Bacillus licheniformis is an important cause of bovine abortion and occasionally causes bovine mastitis. Bacillus subtilis has also been implicated in cases of food-poisoning and in cases of bovine mastitis and ovine abortion (Logan 1988). Bacillus coagulans has been isolated from bovine abortion cases whereas B. pumilus has been isolated from cases of bovine mastitis (Logan 1988). Some Bacillus species cause disease in insects, such as B. thuringiensis, which is widely exploited in agriculture as an insecticide by virtue of its plasmid-borne crystal toxin genes (Romeis et al. 2006), and B. larvae, recently reclassified Paenibacillus larvae, which causes American foulbrood in honeybees. ‘B. piliformis’ has been reclassified Clostridium piliforme on the basis of 16S rRNA sequence analysis and is responsible for Tyzzer’s disease (see Chapter 16) in laboratory mice and foals (Duncan et al. 1993).



Laboratory Diagnosis



Specimens



Bacillus anthracis

Safety considerations in relation to anthrax should be discussed with laboratory workers and veterinarians. Great care should be exercised when dealing with specimens from suspected cases of anthrax. During sample collection, disposable gloves, overalls, and boots should be worn and disinfected after use. If dusty samples are handled, headgear and dust mask should be considered. All procedures should be carried out in a biohazard safety cabinet and infective and contaminated materials subsequently autoclaved followed by incineration. Stained smears, that have been heat-fixed, are potentially dangerous as they may contain viable spores. It should be remembered that the endospores of B. anthracis can remain viable for many years or even several decades.


A postmortem animal examination is usually unnecessary and should never be carried out unless the carcass can be taken to a place where the surrounding area can be thoroughly decontaminated following the examination. Because of the risk of human infection, personnel carrying out a postmortem should take adequate safety precautions. Endospores are not formed in the animal body but sporulation is triggered when vegetative cells are exposed to air. In an unopened carcass, the vegetative forms do not survive the putrefaction process. If anthrax is suspected in cattle or sheep, thin blood smears should be made from blood taken from ear or tail veins as soon as possible after death, for both culture (blood agar) and direct examination to demonstrate the capsule (M’Fadyean-stained smear). In horses and pigs oedematous fluid can be collected from localized sites instead of blood. As pigs usually do not suffer from the overwhelming bacteraemia that occurs in herbivores, the large rods may not be visible in blood smears. Peritoneal fluid is often more useful diagnostically than blood smears in this species. If the animal has been opened, spleen or lymph node samples should be taken. In the case of very old, putrefied carcasses, it is recommended that swabs of the nostrils and eye sockets should be taken along with samples of contaminated soil underneath the animal’s nose and anus.

< div class='tao-gold-member'>

Stay updated, free articles. Join our Telegram channel

Jul 18, 2016 | Posted by in PHARMACOLOGY, TOXICOLOGY & THERAPEUTICS | Comments Off on Bacillus species

Full access? Get Clinical Tree

Get Clinical Tree app for offline access