Toxicology and pharmacology

Chapter 4


Toxicology and pharmacology





Chapter contents



INTRODUCTION


ANTIMICROBIAL DRUG SELECTION AND DOSAGE



ANTIFUNGAL AGENTS


ANTHELMINTICS



ANALGESIA



NON-STEROIDAL ANTI-INFLAMMATORY DRUGS



CHONDROPROTECTIVE AGENTS


CORTICOSTEROIDS



TOXICOLOGY



DRUGS AND THE COMPETITION HORSE






INTRODUCTION


The horse poses problems to the veterinarian in relation to the administration of therapeutic agents. Anatomically and physiologically horses differ markedly from other domestic species and humans. Consequently, it is unwise to use extrapolated dosage rates in the horse. This has been borne out in practice where the disposition, metabolism and excretion of many drugs in the horse have been shown to differ from other species.


Horses have a very large capacity for oxidative metabolism. Drugs that are metabolized by this route, such as the sulfide benzimidazole anthelmintics, are rapidly inactivated and consequently require to be given at higher dosage rates than in most other species. Another good example is the non-steroidal anti-inflammatory drug (NSAID) phenylbutazone, which has an elimination half-life of 5–8 h in the horse and 37–60 h in the cow. It has also been shown that the excretion of amfetamine, which undergoes extensive oxidative metabolism in the horse, is unaffected by urinary pH, whereas it is excreted unchanged in humans as the parent molecule and is highly influenced by urinary pH.


Toxicity may also manifest both severely and frequently in the horse. This may be specific to individual agents such as the ionophores, which cause cardiac failure (q.v.), or it may be typical of a whole class of drugs. Antimicrobial drugs have sometimes been associated with a high incidence of enterocolitis (q.v.) in the horse. Antimicrobial-associated enterocolitis is dependent on the concentration of antimicrobial drug achieved in the large intestine, on the commensal and environmental bacterial population, and possibly also on stress factors such as surgery and transport.


The use of horses in competitions also poses problems, as the several authorities which control equestrian sports each have their own regulations regarding the presence of drugs that could potentially affect the performance of the competitors. Veterinarians must be aware of the regulations and of those drug disposition properties that permit effective use without contravening guidelines.



ANTIMICROBIAL DRUG SELECTION AND DOSAGE



INTRODUCTION


The effective use of antimicrobial drugs in treating systemic bacterial infections depends on the quantitative susceptibility of the pathogenic microorganism, and on its relation to the disposition and potential of the drug to produce adverse effects. It follows that the selection of an antimicrobial drug should take into account both the microbiologic (quantitative susceptibility) and pharmacologic (pharmacokinetic) properties of the drug. In addition, consideration must be given to the location and severity of the infection as well as to formulation of the dosage forms that are suitable for administration to horses, since this will determine the route of administration and dosing rate (dose/dosage interval). Other considerations include the margin of safety of the drug, the convenience of administration of the antimicrobial drug preparation (product) and the cost of the anticipated course of treatment.


The objective of dosage calculations is to maintain plasma concentrations of the antimicrobial drug that are several times the minimum inhibitory concentration (MIC) for the pathogenic microorganism for much of the duration of treatment. This is especially true for drugs with a concentration-dependent bactericidal mechanism.


The MIC is an in vitro quantitative measure of susceptibility and potency and may be defined as the drug concentration that, under the test condition, prevents (just inhibits) the visible growth of a certain percentage of the bacterial species, e.g. MIC90. When MIC data are used in conjunction with pharmacokinetic parameters describing drug absorption and disposition, it is possible to calculate “reasonable” dosing rates. Cognizance is not given to the “post-antibiotic effect” whereby microbial growth may be interrupted for some time beyond the period when antimicrobial concentrations exceeded the MIC.



MICROBIOLOGIC CONSIDERATIONS



Approach to therapy


Having diagnosed the presence of bacterial infection, specimens for bacterial culture and susceptibility testing should, wherever possible, be collected before administering an antimicrobial drug. Since there will be some delay in obtaining laboratory results it is important to initiate therapy (on an informed empirical basis). The choice of drug can be based on clinical experience and examination of stained material (apply Gram stain to direct smear).


The laboratory results of bacterial culture and MIC determination (when required) give precise data that may be used in selecting the antimicrobial drug, its route of administration and dosing rate for continuation of treatment (specific therapy). The usual dosage regimen for an antimicrobial product is based on providing plasma concentrations of the drug that will be effective against the majority of susceptible microorganisms and will not cause adverse effects in the horse. The assumption is made that the systemic clearance of the drug is not changed by the disease state, even though this may not always be the case.



Quantitative bacterial susceptibility


The need to determine quantitative susceptibility depends on the microorganism isolated, i.e. the causative organism of the infection. The antimicrobial susceptibility of bacteria such as β-hemolytic streptococci, Rhodococcus (Corynebacterium) equi and Corynebacterium pseudotuberculosis is usually predictable, whereas it is generally necessary to determine the susceptibility of other pathogenic bacteria, especially coagulase-positive staphylococci and enteric microorganisms (Escherichia coli, Klebsiella, Proteus and Salmonella spp.).


Such susceptibility determinations must follow standard laboratory procedures. Quantitative (MIC) data are preferable to qualitative (disk diffusion, Kirby Bauer method) information because of the possibility of tailoring drug dosage to susceptibility of the causative bacterial pathogen.



Location of infection


When selecting the antimicrobial drug with which to commence therapy, knowledge of the pathogenic bacteria that most commonly cause infections at various locations is useful but should be supported by examination of a stained (Gram or Romanowsky-type Wright–Giemsa) direct smear. Bacterial pathogens that have been isolated from various sites of infection are listed in Table 4.1. Because the principal bacterial species isolated from any site of infection may vary with geographic region, specimen collection for bacterial culture prior to commencing antimicrobial therapy is of paramount importance.




Drug selection for empirical therapy


The suggested drug of choice and alternative drug for initial treatment of infections caused by various microorganisms are presented in Table 4.2. The information in Table 4.2 should be used in conjunction with direct smear examination for drug selection (empirical therapy) while awaiting the results of bacterial culture and quantitative susceptibility testing (when considered necessary). Selection of the drug to use is influenced by location of the site of infection.



In mixed infections with microbiologically diagnosed anaerobic involvement, the concurrent use of metronidazole and benzylpenicillin or gentamicin, depending on whether the primary aerobic bacterial pathogen is Gram-positive or Gram-negative, may represent the antimicrobial drug treatment of choice.


The penicillins, cephalosporins (apart from cefadroxil), aminoglycosides and oxytetracycline must be administered parenterally to horses, while trimethoprim–sulfonamide combination preparations, rifampicin, metronidazole and enrofloxacin (to mature horses only) may be administered PO as paste formulations or by nasogastric tube as oral solutions or aqueous suspensions.



Interpretation of bacterial susceptibility


There are no agreed guidelines for the interpretation of quantitative susceptibility results for equine bacterial pathogens. Suggested interpretative guidelines for MIC breakpoint values are presented ( Table 4.3). The categories are:




Even though the spectrum of activity of individual drugs within each antimicrobial class or subclass in the case of β-lactam antibiotics is, in general, similar, the quantitative susceptibility of microorganisms to individual drugs somewhat differs. Tetracyclines may constitute an exception in that variation among individual tetracyclines in clinical efficacy is largely due to differences in lipid solubility, which influences tissue concentrations attained.


The MIC (q.v.) is the quantitative value normally used to define the in vitro susceptibility of a microorganism. It is used, in conjunction with pharmacokinetic parameters that describe the bioavailability and disposition of antimicrobial agents, to calculate appropriate dosing rates. This approach allows appropriate dosage adjustment to be made for organisms of different susceptibilities. It is the basis for calculating optimal dosage. Even though quantitative susceptibility (an in vitro measurement of activity) generally correlates with clinical efficacy, it cannot be guaranteed to predict the response to therapy. Furthermore, use of the antimicrobial agent to which a pathogenic microorganism is most susceptible in vitro might not be clinically indicated because of its potential to produce adverse effects.


Usual dosage regimens aim to maintain plasma concentrations that are several times the MIC90 for the majority of usually susceptible microorganisms and could be expected to provide effective therapy. At these plasma concentrations, the penicillins, cephalosporins, aminoglycosides, fluoroquinolones, trimethoprim–sulfonamide combinations, rifampicin and metronidazole produce a bactericidal effect, while tetracyclines, sulfonamides (used alone), erythromycin and chloramphenicol produce a bacteriostatic effect on susceptible microorganisms.


Although the terms bactericidal and bacteriostatic generally apply to the effect produced, they are relative depending on the concentration attained and environmental conditions at the site of infection. For antimicrobial agents that exert a bacteriostatic effect it is especially important that plasma concentrations be maintained well above the MIC90 for the pathogenic microorganism throughout the course of therapy. For antimicrobial agents that produce a bactericidal effect the relationship between plasma concentration and bacterial killing depends on whether the mechanism depends on concentration or time.


For drugs with a concentration-dependent killing mechanism (fluoroquinolones and aminoglycosides), it is usual to recommend achievement of Cmax:MIC ratios of 10 or greater, whereas for time-dependent bacterial killing drugs (β-lactam antibiotics) it is desirable to maintain the plasma concentration between 1 and 4 times the MIC for at least half the inter-dose interval.


Impairment of host defense mechanisms is a variable, not generally taken into account in dosage calculations, which contributes to a discrepancy between expected and actual response to therapy, particularly for bacteriostatic drugs. Inadequacy of the type, quality and quantity of the immunoglobulins, alteration of the cellular immune system, or either a qualitative or, more importantly, a quantitative defect in phagocytic cells may result in therapeutic failure despite the use of otherwise appropriate and effective drugs. The effectiveness of therapy may be influenced by local factors at the site of infection. These include pus, the presence of a foreign body, and in the case of abscesses penetrative capacity of the drug and the pH or anaerobic environment within the abscess cavity.



Optimal dosage


Optimal dosage of a drug that produces a bactericidal effect is required in severe infections such as meningitis and endocarditis (q.v.), and in immunocompromised patients. Because of variations in the state of host defenses, the post-antibiotic effect or acquisition of bacterial resistance, and disease-induced changes in the disposition of an antimicrobial agent, optimal dosage cannot be precisely calculated. Disease conditions that may alter pharmacokinetic parameters include fever, dehydration, hypoalbuminemia (e.g. chronic liver disease), uremia and decreased renal excretion (q.v.).


The pathophysiology of the disease condition determines the changes in volume of distribution, clearance and, depending on the changes in these two parameters, the half-life of the drug may be altered. At least some of the pharmacokinetic alterations can be accommodated by adjustment of dosage. The ultimate criterion of optimal dosage is the effectiveness of therapy, as indicated by bacteriologic cure.



PHARMACOLOGIC CONSIDERATIONS


The absorption, distribution and elimination processes for antimicrobial drugs are largely governed by their chemical character and by certain physicochemical properties. The majority of antibacterials are weak organic electrolytes, either acids (e.g. penicillins, cephalosporins, sulfonamides) or bases (e.g. aminoglycosides, macrolides, trimethoprim, metronidazole), while fluoroquinolones, tetracyclines and rifampicin are amphoteric compounds and chloramphenicol is a neutral molecule. Lipid solubility and degree of ionization, which is determined by the pKa of the drug and the pH of the biologic fluid in question, influence the extent of absorption, the pattern of distribution and the principal elimination process (hepatic metabolism and/or renal excretion) for antimicrobial drugs.



Routes of administration


The route of administration of a drug is governed mainly by the formulation of the dosage form (antimicrobial drug preparation). Parenteral preparations of antimicrobial drugs that are formulated as aqueous solutions can be administered either by slow IV injection or IM. Those formulated as aqueous suspensions are designed to provide sustained release (slow absorption), and thereby a prolonged duration of effective plasma concentrations, and should be administered only by IM injection. Prolonged-release products, which cause tissue irritation, and drugs in oily vehicles should never be administered to horses. This excludes the use in horses of some so-called “large animal parenteral preparations”.


At the present time, few antimicrobial drugs are available as oral dosage forms that are convenient to administer to horses. Oral paste preparations that are palatable and of suitable consistency may represent the best type of oral dosage. The addition of an antimicrobial agent to the feed as a powder is an unreliable method of dosing, due to variability in the dose ingested and to the effect of food on the extent of absorption of the drug.


The action of some antimicrobial agents, whether administered orally or parenterally, on the cecal and colonic commensal microorganisms of horses can cause serious digestive disturbances. This adverse effect makes penicillins unsuitable for oral administration to horses other than newborn foals and limits the use of macrolides and, under certain circumstances, of tetracyclines. Foals appear to be less susceptible than adult horses to disturbance in the balance of commensal microbial flora in the large intestine. It is likely that the microbial balance is related to the composition of the usual diet.



BIOAVAILABILITY, DISTRIBUTION AND ELIMINATION


Bioavailability is defined as the rate and extent to which a drug enters the systemic circulation unchanged (as parent drug). The bioavailability of a drug is influenced by the route of administration and formulation of the dosage form while the plasma concentration profile is, in addition, influenced by the dose administered. Significant features of the plasma concentration profile include the peak plasma concentration and the time period that plasma concentrations exceed a desired minimum concentration based on MIC90 for commonly isolated susceptible pathogenic bacterial species.


The usual dosage regimen for an antimicrobial drug must take into account bacterial susceptibility to the drug and features of bioavailability, extent of distribution and the overall rate of elimination of the drug based on data obtained in clinically healthy animals, representative of the species of interest. The severity of an infection and functional state of the principal organs of drug elimination may require adjustment of the dosage regimen (either size of dose or dosage interval) or the use of an alternative drug.


When the parenteral preparation is a non-irritating aqueous solution of the drug, absorption from IM injection sites in generally rapid, in that the peak plasma concentration (Cmax) is attained within 30–60 min, and complete (i.e. systemic availability approaching 100% is obtained). This situation applies to the 5% parenteral solution of gentamicin sulfate. Ceftiofur, as reconstituted aqueous solution of the sodium salt, is administered to horses by IM injection. The drug is rapidly and completely absorbed from the injection site and, following entry into the systemic circulation, is converted by ester hydrolysis to desfuroylceftiofur, which has antibacterial activity similar to that of the parent drug. Even though the apparent half-life of ceftiofur is approximately 3 h, the recommended dosage interval is 12 h.


Long-acting parenteral preparations are formulated in a non-aqueous (such as oil or an organic) vehicle or a poorly soluble salt of the drug is formulated as an aqueous suspension. These preparations decrease the rate of drug absorption, which takes place over an extended period. Oxytetracycline formulated in polyethylene glycol is the only long-acting preparation of oxytetracycline that is suitable for IM administration to horses. The horse is the least tolerant of the domestic animal species to injection site irritation, and drugs in oily vehicles should never be administered parenterally to horses. The commercially available long-acting parenteral preparations of amoxicillin and oxytetracycline, apart from one recently formulated preparation, are too irritant for IM administration to horses.


When the rate of absorption significantly influences the overall rate of elimination of a drug, flip-flop pharmacokinetics apply, allowing the use of a longer dosage interval than that associated with a conventional (immediate release) preparation of the drug. This applies to procaine benzylpenicillin, which is an aqueous suspension. Following the administration of a single dose (20000IU/kg) of procaine benzylpenicillin at various IM injection sites and SC, the peak plasma concentration (Cmax) and systemic availability (indicated by area under the curve over a 24 h period) of benzylpenicillin were highest when the long-acting preparation was injected IM in the neck region (m. serratus ventralis cervicis) and were lowest when it was injected SC.


Because of differences in the blood flow to various skeletal muscles and in absorptive surface area, location of the injection site influences features of the plasma concentration profile. The lateral neck (m. serratus ventralis cervicis) at the level of the fifth cervical vertebra, ventral to the funicular part of the ligamentum nuchae and dorsal to the brachiocephalic muscle, appears to be the optimal site in horses for IM injection of long-acting parenteral preparations. The convenience afforded by the extended dosage interval associated with the use of long-acting preparations is somewhat offset by a loss of flexibility in dosage.


Absorption of antimicrobial agents, like other drugs, takes place by passive diffusion. The absorption process is mainly determined by the physicochemical properties of the drug, namely lipid solubility and, in the case of weak organic acids and bases, degree of ionization at the principal sites of absorption. In horses, drugs are absorbed from the stomach and proximal (upper) small intestine and, in addition, from the colon. The rate and pattern of drug absorption, which are reflected by the plasma concentration profile, are influenced by the availability of the drug for absorption. This, in turn, is influenced by the stability and solubility of the drug in gastrointestinal fluid and binding (adsorption) to the fibrous constituents in feed. When the latter is substantial, the colon may be the principal site of absorption, which occurs following microbial digestion of the fiber.


The pattern of absorption may be biphasic with an intervening period of approximately 8 h, during which time digesta move from the small intestine to the colon. The temporal relationship between feeding and oral dosing influences not only the pattern but may also affect the extent of absorption (i.e. systemic availability) of the drug. When rifampicin (5 mg/kg) was administered PO to horses 1 h after feeding, systemic availability of the drug was 26% compared with 68% when the dose was given 1 h before feeding.


Wide individual animal variation in systemic availability is a feature of orally administered drugs that are well absorbed from the gastrointestinal tract (GIT). The systemic availability of orally administered metronidazole ranges from 58% to 92% in horses and does not appear to be significantly affected by the time of feeding relative to oral administration of the drug. Several antimicrobial agents that are commonly administered orally to other monogastric species, such as phenoxymethylpenicillin, amoxicillin, cefadroxil and ciprofloxacin, are poorly absorbed in adult horses.


Having traversed the gastrointestinal mucosal barrier, drug molecules are conveyed in hepatic portal blood to the liver, where they are subjected to the “first-pass” effect prior to entering the systemic circulation. Hepatic first-pass metabolism can substantially decrease the systemic availability of lipid-soluble drugs that undergo microsomal oxidative reactions (e.g. trimethoprim, metronidazole, rifampicin, enrofloxacin). While the metabolites of most antimicrobial agents are inactive, some, such as desacetylrifampicin and ciprofloxacin (to which enrofloxacin is converted), have antimicrobial activity at least equal to that of the parent drug. Because the formation of desacetylrifampicin is capacity-limited, the half-life of rifampicin is dose-related in horses. Certain antimicrobial agents (erythromycin and chloramphenicol) inhibit hepatic microsomal enzyme activity, whereas rifampicin is a potent inducer of hepatic microsomal enzymes. Drug-induced changes in microsomal enzyme activity are generally associated with chronic rather than short-term use of activity-modifying drugs.


The extent of distribution of antimicrobial agents, which is more important than the rate of extravascular distribution, is mainly determined by their lipid solubility and is influenced by the degree of ionization in the blood and extent of binding to plasma proteins. Lipid-soluble antimicrobial agents passively diffuse through cell membranes, penetrate cellular barriers, enter most tissues of the body and generally reach infection foci. However, since most bacterial infections occur in extracellular fluids, poorly lipid-soluble drugs (β-lactam and aminoglycoside antibiotics) are equally effective as lipid-soluble drugs provided they are not extensively bound to plasma proteins.


A high degree of ionization in the blood, extensive binding to plasma proteins and rapid elimination are factors that limit the concentrations attained in transcellular fluids (aqueous humor, synovial fluid and cerebrospinal fluid [CSF]). Elimination by the liver, especially by hepatic microsomal oxidative reactions, requires at least a moderate degree of lipid solubility. Examples of lipophilic antimicrobial agents include erythromycin, clindamycin (contraindicated for use in horses), trimethoprim, enrofloxacin, minocycline, rifampicin, chloramphenicol and metronidazole. Individual tetracyclines differ in lipid solubility, which underlies variation between members of the tetracycline class in their disposition (i.e. distribution and elimination) and clinical efficacy.


Most lipophilic antimicrobial agents are organic bases, some are amphoteric (fluoroquinolones, tetracyclines, rifampicin), and chloramphenicol is a neutral molecule. Even though aminoglycoside antibiotics are weak organic bases, their polar nature accounts for their limited capacity to enter cells and penetrate cellular barriers, and their elimination by renal excretion (glomerular filtration). Mycoplasma spp. lack rigid cell walls but lipid solubility is a requirement for an antimicrobial agent to be clinically effective because the microorganism is often located intracellularly.


Penicillins and cephalosporins (β-lactam antibiotics) and sulfonamides are organic acids. Because of their high degree of ionization in biologic fluids, the distribution of penicillins is limited in that they attain low intracellular concentrations and do not penetrate well into transcellular fluids. In the presence of fever associated with an acute inflammatory reaction, penicillins have increased capacity to penetrate cellular barriers (such as the blood–CSF barrier). This may arise through one or more of several mechanisms, including (a) increased blood flow (arteriole dilatation) and (b) reduced extrusion of penicillin from the CSF through disruption of an active efflux pump.


Amoxicillin distributes more widely than benzylpenicillin in extravascular fluids and tissues, presumably due to the higher lipid solubility of amoxicillin. Penicillins, with the exception of nafcillin, are eliminated by renal excretion (glomerular filtration and proximal tubular secretion). Nafcillin and a small fraction of amoxicillin in the systemic circulation are excreted in bile. The β-lactamase inhibitors (clavulanic acid and sulbactam) do not alter disposition of the penicillins with which they are combined in commercially available dosage forms. β-Lactamase inhibitors enhance the activity of aminobenzylpenicillins (amoxicillin, ampicillin) and ticarcillin.


Individual cephalosporins, particularly those within the second and third generations, differ both qualitatively (spectrum of activity) and quantitatively (MIC for susceptible Gram-negative bacteria) in antimicrobial activity. Distinguishing features of third-generation cephalosporins (cefotaxime, ceftizoxime, ceftriaxone, cefoperazone, ceftazidime), all of which must be administered IV, are their expanded spectrum against Gram-negative aerobic bacteria and their ability (with the exception of cefoperazone) to penetrate the blood–brain barrier.


Cephalosporins, like penicillins, are eliminated by renal excretion (glomerular filtration and proximal tubular secretion) with the notable exceptions of ceftriaxone and cefoperazone, which are excreted by the liver in bile. Ceftiofur differs from other third-generation cephalosporins in that ceftiofur is administered by IM injection and, following absorption into the systemic circulation, is eliminated by metabolism, initially conversion by an esterase in the kidneys and liver to an active metabolite (desfuroylceftiofur) which undergoes conjugation with endogenous substances (including glutathione) in the liver.


The sulfonamides constitute a series of weak organic acids with pKa values ranging from 5.0 (sulfisoxazole) to 10.4 (sulfanilamide). Weak organic acids exist predominantly in the non-ionized lipid-soluble form in biologic fluids of pH below their pKa values. Although sulfonamides are seldom administered alone to horses, certain sulfonamides (sulfadiazine, pKa 6.4; sulfamethoxazole, pKa 6.0; sulfadoxine, pKa 6.1) in conjunction with trimethoprim (organic base, pKa 7.3) formulated as fixed ratio (5:1) combination preparations are widely used. Both parenteral and oral (paste) dosage forms are commercially available.


The sulfonamides and especially trimethoprim, which is more lipid-soluble, have good tissue penetrative capacity and they act synergistically to produce broad-spectrum bactericidal effect. The half-lives of sulfadiazine (3.6 h) and sulfamethoxazole (4.8 h) are reasonably close to that of trimethoprim (3.2 h), while the half-life of sulfadoxine (14.2 h) is much longer. Trimethoprim and the sulfonamides with which it is combined are eliminated mainly by hepatic metabolism and a smaller fraction of both drugs in the combinations is excreted unchanged (as parent drug) in the urine. The renal excretion processes involved are glomerular filtration, proximal tubular secretion and pKa/pH-dependent passive reabsorption of the non-ionized moieties from distal renal tubular fluid.


An estimation of the extent of distribution of a drug is provided by the pharmacokinetic parameter, volume of distribution, which quantifies the apparent space in the body available to contain the drug following attainment of pseudodistribution equilibrium. It does not reveal the distribution pattern of a drug, which can be described only by measuring the levels (amount) of drug in the various organs and tissues of the body. Knowledge of the volume of distribution is required for calculating the dose (mg/kg) that must be administered to provide a desired concentration in the plasma. Drug administration by an extravascular route (PO or IM) may require upward adjustment of the dose to compensate for incomplete systemic availability of the drug.


The overall elimination of antimicrobial agents obeys first-order kinetics when usual doses are administered by IV injection. This implies that 50% of the drug in the body is eliminated (by metabolism and/or excretion) each half-life. Because lipophilic antimicrobial agents are eliminated mainly by the liver (metabolism or biliary excretion) their half-lives vary widely compared with the half-lives of drugs that are eliminated by renal excretion ( Table 4.4). Even though oxytetracycline is eliminated by renal excretion, the relatively long half-life of this antibiotic is attributed to enterohepatic circulation. An application of half-life is in the selection of an appropriate dosage interval, which may be either approximately equal to or a small multiple of the half-life. This is especially important for antimicrobial agents that produce a bacteriostatic effect (e.g. tetracyclines, chloramphenicol, sulfonamides).


< div class='tao-gold-member'>

Stay updated, free articles. Join our Telegram channel

Jul 8, 2016 | Posted by in EQUINE MEDICINE | Comments Off on Toxicology and pharmacology

Full access? Get Clinical Tree

Get Clinical Tree app for offline access